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SUMMARY

High discrimination algorithms are increasingly being considered for the task of processing
data from arrays of sensors and in the form of time series. Many such algorithms rely on
singular value decomposition of a data matrix or eigen analysis of the corresponding
covariance estimate, thereby imposing a heavy computational requirement. However, if the
data is oversampled, or if the solution vector may be constrained, in terms of its angular
extent or frequency range for example, it is often possible to pre—process the data matrix
in such a way as to reduce its size. This may be carried out by means of a fixed matrix
pre—multiplication, and can lead to a substantial acceleration of the subsequent analysis.
The method is described, and its use exemplified in combination with a number of
well-known high discrimination algorithms. A number of results from a Monte Carlo
analysis are given which show that the new technique can lead to significantly improved
parameter estimates being obtained from the high discrimination algorithms.

Copyright
®

Controller HMSO London
1988




Ak

CONTENTS

1. INTRODUCTION

2. THE DATA MODEL

3. METHODS OF DATA ANALYSIS

4. AN EIGENVECTOR PROJECTION METHOD (EPM)
4.1. REDUCTION OF THE DATA MATRIX

4.2. APPLICATION OF EPM TO HIGH DISCRIMINATION ALGORITHMS
4.3. PROPERTIES OF EPM

5. EXPERIMENTAL RESULTS
5.1 MULTIPLE SOURCE SCENARIO
5.2 MONTE CARLO ANALYSIS

5.2.1.
5.2.2.
5.2.3.
5.2.4.
5.2.5.

6. CONCLUSIONS

REFERENCES

DATA COLLECTION AND ANALYSIS
TARGETS CLOSE TO BROADSIDE
TARGETS FAR FROM BROADSIDE
TWO UNEQUAL POWER SIGNALS
ARRAY CALIBRATION ERRORS

APPENDIX 1. MONTE CARLO RESULTS: TWO TARGETS CLOSE TO BROADSIDE

Al.1. RESULTS AS A FUNCTION OF ASNR

Al1.2. RESULTS AS A FUNCTION OF EIGENVALUE RATIO
Al.3. RESULTS AS A FUNCTION OF ANGULAR SEPARATION
Al.4. RESULTS AS A FUNCTION OF NOISE THRESHOLD

APPENDIX 2. MONTE CARLO RESULTS: TWO TARGETS FAR FROM BROADSIDE

A2.1. RESULTS AS A FUNCTION OF ASNR

A2.2. RESULTS AS A FUNCTION OF EIGENVALUE RATIO

APPENDIX 3. MONTE CARLO RESULTS: TWO UNEQUAL POWER SIGNALS

A3.1. RESULTS AS A FUNCTION OF ASNR

A3.2. RESULTS AS A FUNCTION OF EIGENVALUE RATIO
A3.3. RESULTS AS A FUNCTION OF ANGULAR SEPARATION

APPENDIX 4.
APPENDIX 5.
APPENDIX 6.

APPENDIX 7.

MONTE CARLO RESULTS: ARRAY CALIBRATION ERRORS

TIME DOMAIN CROSS CORRELATIONS FOR MONTE CARLO TRIALS

CONSISTENCY OF MONTE CARLO RESULTS “Acoesston For /
RELATIONSHIP BETWEEN ASNR AND E(2)/E(3) n...

e b

NT1S  iRART

v TaAR .
L cneed O

sy

© Distribution/

_A\mil 4bility Codesn

Mvall ”{md/or }
Juecial {

v
Mo




N

s Ry g—— ———

1. INTRODUCTION

There is currently a substantial and growing interest in high discrimination (or high
"resolution") algorithms for processing the data collected from arrays of sensors and in
the form of time series. Particular attention has been devoted to algorithms employing
singular value decomposition (svd) of a data matrix, or equivalently, eigenvector
decomposition of the estimated covariance matrix [1}. It is thought that such algorithms
hold great potential for the interpretation of signals collected in radar and sonar phased
array systems, since, under suitable conditions, they are able to locate multiple
independent sources of signal within the conventional correlation filter beamwidth
limitations.

However, such algorithms have serious shortcomings which must be dealt with before their
full potential for high discrimination may be realised in practical systems. Principal among
these is the huge data processing burden imposed by the singular value decomposition or
eigen analysis in problems of realistic size.

In order to tackle the requirement to process data quickly, whilst using inherently
computer intensive algorithms, attempts have been made to increase the available
processing rate through the design of parallel svd and eigen decomposition algorithms and
special purpose systolic processing architectures [2]. Under some special conditions, it is
possible to reduce the dimension of the data matrix by employing the spatial averaging or
sub—aperture technique [1], more commonly encountered as a pre—processing stage if
coherent multipath is suspected [3]. Methods have also been described [4,5] by which the
processing requirement of multi~domain data may be reduced below that of naive
extensions of previously available algorithms. One of these [5] makes use of the
sub-aperture technique to pre—process domains of the data subsequent to the first (for
example, to process time domain data, following a spatial analysis), and could be carried
out still more rapidly by processing multiple channels of sub-aperture data in parallel.

In general, the approaches referred to above make use of additional prior knowledge
about the form of the problem in order to provide a suitable framework for the
subsequent straightforward use of the normal singular and eigen vector based algorithms.
Following an introduction to our data model! in section 2, and a review of traditional
methods of analysis in section 3, we give details of a further novel stage of
pre—-processing, in section 4, which reduces the size of the data matrix. It does this by
making use of prior knowledge concerning the degree of oversampling of the data, or the
boundaries of the required solution. The reduction is achieved in such a way that the
maximum practical number of signals may still be detected, given some knowledge of the
signal to noise ratio. Section 4.2 describes the application of the new technique, which we
refer to as an eigenvector projection method (EPM), to a number of well-known high
discrimination algorithms, such as MUSIC [6,18]. Section 4.3 is a more detailed discussion
of the effect of EPM pre-processing. Section $§ presents examples of our computer
simulations, and, in particular, discusses typical results from a Monte Carlo analysis of the
performance of the EPM modified algorithms. A larger number of Monte Carlo results
are collated for reference in the Appendices, together with some discussion regarding their
consistency and the possibility of a more economical representation of such data.

2. THE DATA MODEL

The usual data model employed [1] is as follows
d(t) = M f(t) + wm(t) 1)

where f(t) is a vector representing the input which is to be reconstructed, M is a linear
transformation matrix, w(t) is a vector sample of zero mean Gaussian white noise, and
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d(t) is the resulting data vector, or snapshot, at time t. We will assume for simplicity
that the matrix M (often referred to as the array manifold [6]) is known to within a
negligible calibration error [1]. For example, in the case of an array of n sensors
expected to receive signals from independent point sources, M will be an (AxN) matrix,
whose N columns (denoted m(6;), i =1 to N) represent the independent spatial
transformations of calibration signals from N possible discrete angles, 6;. Thus, M
contains a representative subset of the continuum of possible received waveforms: it
provides calibration information about the array manifold rather than details of specific
signal sources. If f(t) represents the complex amplitudes of the signals associated with m
independent point sources, as measured at a given instant, d(t) will be given by the
linear combination of m corresponding columns of M, scaled by the signal amplitudes and
perturbed by additive noise. From a reconstruction of f(t), we hope to locate the m
sources and estimate their powers.

3. METHODS OF DATA ANALYSIS

The usual method of solution is to use the calibration matrix, M, to form a set of
correlation filters which are "matched" to each of the potential signal directions, 8;, and
to evaluate

P(o,t) = 1f'(8,012 = mF(e;) d(t) dH(v) m(8;) / {mf(s;) m(s)}, i=1t N, (2

where the superscript H denotes the complex conjugate (Hermitian) transpose, and 1x?
denotes the squared magnitude of the individual elements of the vector, x, and r_n_H(oi) is
a row of the matrix MH. This is a simple estimate of the spatial power distribution of
the input, f(t). Such processing may be considered as “scanning® the data with the
beamforming weight vector, _m”(oi). P(6,t) has the familiar broad multiple lobed pattern
of classical analysis, with consequent poor discrimination of multiple signals, resulting from
the wide beamwidth and high sidelobes.

Traditional least squares techniques [7] suggest a possible alternative solution of the form
i1z = (MH M)TTMH d(1),2 ' (3)

where (MHM)~'MH is known as the pseudo-inverse of M. However, in order to solve for
pi'(t)ﬁ, limits to the angular extent of the required reconstruction, #_ and #8,, are
necessarily implied [1], since the matrix M must be fully defined before its pseudo~
inverse can be evaluated. Thus, it is not sensible to "scan" the data beyond these pre-
defined limits. In addition, the resulting reconstruction is extremely sensitive both to the
accuracy of the implied angular bounds, and also, as written in equation (3), to the
additive noise within the data [1].

The solution in equation (3) may be rewritten in terms of the singular value
decomposition of M [7]. Thus,

i@z = v st UH duyz 4

where U and V are unitary matrices containing the left and right singular vectors of M
respectively, and S is the diagonal matrix of singular values of M. That the decomposition
depends on the limits, #_ and 6., is illustrated by Fig. 1, which shows the singular value
spectra calculated for each of four M matrices corresponding to different angular
coverages. Fig. 2 demonstrates the similarity between an angular limitation for a 0.5
wavelength spaced linear array, as defined by 4. = -14.5 and 9, = +14.5, and spatial
oversampling using an array with 0.25 wavelength inter-element spacing, 6_ = -30" and
0, = 30". By setting both the smallest singular values (those for which (s,/s)?, the
squared ratio of the first to i'® singular values, is greater than the signal to noise ratio)
and their corresponding inverses to zero, and thus forming a reduced rank pseudo-inverse
of M, the sensitivity to noise, referred to in the previous paragraph, may be reduced [8].
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Fig. 1. The singular value spectra of four differevt M matrices, each of which is a calibration masrix for
the same 100 element 05 wavelength spaced phased array, bu corresponding to differou angular conmstrains,
6_ and B, (a) sin(6,) = -sin(0_) = 0.1; (b) sin(8,) = -sin(8_) = 02; (c) sinf8,) = -sin(B_) = 0.4;
(d) si(0,) = -sin(f_) = 0.8. The uppermost porsion of each curve indicates thar, within the spaces
defined by the related singular veciors, signals may be transformed viraually withow anenuation. The steeply
sloping portion of each curve indicates rapidly incressing attenuation of the corresponding singular veciors
as they are transformed via M. The lower, almost horizomal section indicates the presence @ "noise”
component resulting from accumulated mumerical errors in the compwation: transformation of the data via
M~ (s in equation (4)) would be significantly affected by these mumerical errors, if they were not
removed by seiting the inverted singular volues to zero. In each of the cases, a 10 d, the change of
anguler comstraines {eads 10 an approximate doudling of the wnattenuated degrees of freedom.
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Fig. 2. A comparison of the singular value spectra for two 16 elemems linear arrays:
(%) elememt spacing 025 wavelengths; sin(8,) = -sin(f_) = 05
(#) eloneu spacing 035 wavelengths; sin(0,) « -sin(f_) = 0.25.
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4. AN EIGENVECTOR PROJECTION METHOD (EPM)
4.1. REDUCTION OF THE DATA MATRIX

The reduction in the sensitivity to noise of the method defined by equation (4), is
achieved by projecting the data onto the subspace defined by those k vectors, denoted
below by U,, which are contained in the matrix U and are associated with the remaining
k non-zero singular values. It can be seen from equation (4) that the validity of this
processing rests on the assumption that the signal components in the data may be
sufficiently accurately represented by the vector

gty = U dit) . (&)

By this we mean that the components of the data which are suppressed by this projection
are assumed to be indistinguishable from the noise. The vector ¢(t) has dimension k < n,
which depends on the assumed signal to noise ratio, the limits 6_ and 6,, and the
degree of spatial oversampling or redundancy in the array.

Under conditions of low signal to noise ratio, the single snapshot pseudo-inverse
reconstruction technique of equation (4) achieves little better discrimination performance
than the classical matched filter, despite the additional implied constraint on the spatial
extent of the input [1]. However, it is under these very conditions that the dimension of
the vector ¢ is most significantly reduced. Furthermore, the singular transformation of
equation (5) may also be applied to multiple snapshots of data, stored in a2 matrix D of
dimensions (nxP), where P is the number of snapshots. Thus,

c=U{D , (6)

where C is a matrix of dimensions (kxP). This forms the basis of our eigenvector
projection method (EPM).

4.2. APPLICATION OF EPM TO HIGH DISCRIMINATION ALGORITHMS

The widely quoted MUSIC method [6] makes use of the left singular vectors, E, of the
data matrix, D (which are the same as the eigenvectors of the (nxn) covariance matrix,
(D DH)), to form the angular estimate

Hi6.) Eu E . .
Py = = (;“)(05 m?e:)—nw) P isleN (7

where Ey is the matrix of so—called "noise-subspace™ singular vectors corresponding to
the (n - m) smallest singular values of D. The normalisation term in the denominator of
equation (7) is included (as in equation (2)) to allow for non-uniform weighting of the
gain vectors represented by the array manifold. The locations of the minima of this
function are used to estimate the positions of the signal sources.

Clearly, finding E for a large sensor array dimension n imposes a heavy processing
burden. However, if the corresponding singular vectors, F, of the reduced data matrix C
are evaluated, a bounded solution may be calculated, via the MUSIC algorithm, as

He) U, Fy F 0 .
*’“’a>=%%h%o%muﬁ—?ﬁ"=“°~- 0_ < 6, < 0y . ®)

where Fy is the matrix of noise—subspace singular vectors of C, and U, transforms these
vectors back into the n-space of the array manifold. Correct normalisation is retained by
using the "modified® array manifold vectors, U}l m(6;), in the denominator.

Normalisation of the angular spectrum is of particular importance in the extension of
EPM to certain other high discrimination algorithms, such as Burg's MEM [11] and the
method of Kumaresan and Tufts [9]. Without correct normalisation, the methods fail to



perform correctly. MEM, in normalised form, may be written as

mH(s) w »M mre)

P8, = e AR , i=1t N, )
where
w=R"¢, ., (10)

and ¢, is the first column of the identity matrix.

Therefore, EPM/MEM may be written as

mt(s) w, % m(s)

P(8;) = oo W, ;.*‘fm(ﬂi) , i=1t N, 6.¢6 <8, (11)
where
w,=U, (CCHV Ufle, , w, =U We, . (12)

The Kumaresan and Tufts algorithm (KT) may also be written in normalised form as in
equation (9), but with the weight vector, w, now given by

E, ef

- e 1
¥ (13)
where gy is the first row of the noise subspace matrix of singular vectors, Ey.

Thus, EPM/KT, the EPM pre~processed version of the KT algorithm, has the same form
as equation (11), but in this case,

H
w, = (U FV®D | g w, = Yy u (14)
£ YU

where u, is the first row of Uy, and g is the first row of (U, Fy).

EPM may also be appiied to the MLM method of Capon [10], which is then written as
= m”(f’!-) U C! UE m(é;)
pee) = mP(6,) Ug UL m(#;) ’ (a3)

Variants of the above algorithms, specifically designed for regularly spaced linear arrays,
and involving the location of complex polynomial roots in the z-plane [15), may also
benefit from the accelerated calculation of the singular vectors and matrix inversions made
possible by EPM. The numerator terms of the algorithms given above in equations (7) to
(15) may be written in the general form

P(s;) = mb(8;) X m(6;) (16)

where, for example, X = (Ey E[) in the MUSIC algorithm, and X = (U, Fy FJ UP) in
the EPM/MUSIC algorithm, etc. We may now define the polynomial,

-
D(z) = z'xj 27} an
jmenty

where each of the coefficients, x;, is calculated as the sum of the values along the j®
diagonal of X. Locating the roots of this polynomial is approximately equivalent, in the
case of data from a regularly spaced, uniformly weighted linear array, to finding the
peaks of the spatial spectral estimate given by equation (16,. Barabell et al [15] have
shown that root-finding variants of such algorithms have enhanced signal location
performance over the more usual “spectral” versions that we have concentrated on in this
report.
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Fig. 3. (a} Spatial frequency filter functiom applied by EPM(k=5}, asswming angular comstraints given by
sinf6,) = ~sin(8_) = 025 (indicated by vertical brokem lines) for a 16 element 05 wavelength spaced
linear array. (b) Spaiial filter function obtained using 5 equally weighted comvemstional beams, directed at

-178, -0.89, 0, 0.89, and 1.78 beamwidths away from boresight.
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Again for the case of regular linear or planar arrays, sub-aperture processing may still be
utilised to combat coherent multipath or to analyse time series information, provided that
it is applied to the corresponding original data and reference matrices, D and M, prior to
EPM. The matrix Uy will then be that corresponding to the sub-aperture array manifold.

Signal powers and time-domain behaviour may be extracted [1,6] simply by replacing M
in the usual equations by A = (UE M). Each identified signal direction is referenced to a
particular column of the matrix A. Thus if these columns are collected together and
stored in a matrix, A, the time series associated with each direction is a row of the
matrix, T, given by [1]

T = (A} A)7'AH C , (18)
and the signal powers may be estimated as the diagonal elements of the matrix
P=TTH . (19)

As the Monte Carlo simulation results described in section 5 show, EPM pre-processing
leads to improved angular estimates as a result of noise reduction. The fidelity of the
extracted time series, and the accuracy of the estimated powers will be improved over
results from the equivalent "conventional" high discrimination processing principally at low
signal to noise ratio. by virtue of the enhanced probability of resolution.

4.3. PROPERTIES OF EPM

EPM is equivalent to a spatial beamforming process, using the conjugate transpose of the
principal eigenvectors, U, of M in place of the more usual beam steering vectors. The
effect is similar to directing a limited number of conventional beams into the angular
region of interest {14]). This may be illustrated by plotting the effective beam pattern,
which may be considered as a spatial filter transfer function. Fig. 3a shows a typical
function applied to the data space by EPM, generated by assuming a 4 beamwidth
angular region of interest, using a 16 element 0.5 wavelength spaced linear array, and
k = 5. Fig. 3b shows the function obtained using five equally weighted conventional
beams, directed at ~1.78, -0.89, 0, 0.89 and 1.78 beamwidths away from boresight. The
beam positions have been chosen such that the resulting pattern approximately resembles
that of the eigenvector processor. In filter terms, the choice of beam positions gives a
trade-off between in-band ripple and out—of-band rejection. We have not explored the
effect of using differently weighted beams or irregularly spaced beams, for example. EPM
provides a secure basis for choosing the optimal maximum number of "beams", based on
knowledge of signal to noise, and automatically places those "beams” so as to give a
good trade-off as described above.

Although the angular estimates of signals located within the region of interest, derived
following EPM pre-processing are not sensitive to the validity of the assumed angular
frequency constraints, 6_ and 6., the same is not true of the signal extraction and power
estimation stages (equations (18) and (19)). If significant signal amplitudes exist at
unknown angles beyond these boundaries, the estimates of power and time behaviour may
degrade [1]. The same is true for any of the high discrimination algorithms if they fail
to locate one or more signals accurately. For example, the signal estimation performance
based on the output of MUSIC would deteriorate in a similar manner if the P(8,) of
equation (7) was also to be limited to 6. < 8; < 8,. This sensitivity arises because the
inversion required by equation (18) is sensitive to power leakage into sidelobes which fall
beyond beyond 8_ and 8,. This is illustrated by an example in Fig. 4, which shows a
typical filter function, as applied by equation (18) to a three target scenario, where we
have assumed that only two of the targets have been detected, the third being located
slightly beyond the assumed angular window delimited by the vertical dotted line at 6.
The third target falls within the main "lobe™ of the filter response, but has not been
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EPM /MUSIC (equation (8)), processed in order to reduce the total mumber of eigenvectors to 26, and the
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of Fig. 6 by approximately 10dB as a result of the emhanced noise immunity conferred by the EPM
pre-processing.
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Fig. 8. A plot of the locations of the zeros of the polynomial gemerared by equation (17} applied to the
MUSIC noise space eigenvectors used in Fig. 6. True signal locations are indicated by the short lines close

to the wnit circle and the assumed angular constraints (which demote the limits of Figs. 6 and 7) by the
broken radial lines.

Fig. 9. A plot of the locations of the zeros of the polynomial generated by equation (17) applied 1o the
EPM(k=$5)IMUSIC noise space eigemvectors used to create Fig. 7. True signal locations are indicated by the

short lines close to the unit circle and the assumed angular constrainis (which denote the limits of Figs. 6
and 7) by the broken radial lines.
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detected. Thus the power estimate is higher than if only two targets were present, the
excess being falsely attributed to the two identified angles and any spurious noise-related
detections. It may be possible to reduce such sensitivity by the application of multiple
constraint adaptive canceller techniques to null signals in the sidelobes of the EPM filter
during the power estimation step.

5. EXPERIMENTAL RESULTS

As a demonstration of the EPM technique, we present the results of processing a set of
simulated snapshots of data corresponding to a multiple source scenario, using EPM in
combination with the MUSIC algorithm. This is followed by a discussion of the results of
Monte Carlo analyses of data from a variety of two source scemarios, in which results
obtained from high discrimination algorithms acting on the normal covariance matrix are
compared to those obtained from the same algorithms acting on the reduced size
covariance matrix output from EPM. The actual Monte Carlo results are more
comprehensively presented for reference in the Appendices.

5.1. MULTIPLE SOURCE SCENARIO

The data matrix for the multiple source scenario consisted of 100 simulated snapshots of
complex data from a linear array of 100 omnidirectional elements separated with 0.5
wavelength spacing, receiving signals from 14 independent point sources distributed
between 215° in the far field. Independent samples of zero mean Gaussian noise were
added at each sensor and time instant.

As a basis for comparison, Fig. 5 shows the conventional matched filter response (an
average of the 100 single snapshot reconstructions given by application of equation (2)) to
this scenario. This plot displays the broad multiple lobed structure characteristic of this
method. It also serves to demonstrate that the discrimination problem is often more
related to a difficulty in the detection of low power signals which have been obscured by
the sidelobes of the high power signals, rather than simply a lack of resolution per se.

To demonstrate the performance of the new technique, we have derived two further
reconstructions of the same multiple source scenario, as analysed in each case by MUSIC.
In Fig. 6 the data has been processed in the normal manner, involving the eigen
decomposition of the full 100x100 complex valued covariance matrix. In Fig. 7, the data
has been pre-processed using EPM, taking into account the assumed maximum angular
distribution of the targets of 215, and a dynamic range (signal to noise) estimate of only
6dB, to form a reduced (26x26) complex covariance matrix for input to the eigenvector
decomposition. The result, running typical serial Householder reduction and QL
diagonalisation routines [12], was a reduction in the time taken for this stage by a factor
of approximately 56, as would be expected. The reconstructions of Figs. 6 and 7 are
virtually indistinguishable, apart from the fact that the nulls in the pre-processed result
are deeper than those in the usual MUSIC plot by some 10dB. This has occured as a
result of discarding noisy degrees of freedom in the data via the EPM processing, and
indicates an improvement in the ability of the algorithm to extract signals from noise, as
is further demonstrated by the results of section 5.2.

To demonstrate the applicability of EPM to the z-plane root variants of high
discrimination algorithms, Fig. 8 shows the z-plane locations of the zeros of the
polynomial given by equation (17) in the root version of MUSIC. The data used was the
same as that for Figs. 5, 6 and 7. Fig. 9 shows the corresponding plot of roots from the
EPM pre-processed MUSIC algorithm. Root positions beyond the assumed field of view
(indicated by the radial lines) may be ignored.
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DATA COLLECTION AND ANALYSIS ALGORITHM

1. RECORD DATA:
FOR each emitter separation
FOR each signal to noise ratio
FOR each repeat
generate new data matrix
FOR each algorithm
RECORD angle and power estimates onto disc
RECORD null depths
NEXT algorithm
NEXT repeat
RECORD average of covariance eigenvalue spectra
NEXT signal to noise ratio
NEXT emitter separation

2. ANALYSE DATA:
FOR each separation
FOR each signal to noise ratio
FOR each repeat
FOR each algorithm
FOR each angle estimate
test against thresholds in angle and power
assign targets to estimates

record positions and powers of resolved pairs
NEXT angle estimate

count total false alarms
count total resolutions
NEXT algorithm
NEXT repeat

FOR each algorithm
average probability of resolution

average false alarm rate
NEXT algorithm

NEXT signal to noise ratio
FOR each signal to noise ratio
FOR each algorithm
FOR each emitter
IF resolved THEN
calculate mean position
calculate bias of mean from true position

calculate standard deviation of angle estimates
END IF

NEXT emitter
NEXT algorithm
NEXT signal to noise
NEXT separation

Fig. 10. Monte Carlo data collection and analysis procedures.
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5.2, MONTE CARLO ANALYSIS
5.2.1. DATA COLLECTION AND ANALYSIS

A more complete investigation of the performance of algorithms incorporating EPM has
been carried out via a series of Monte Carlo simulations. These enable comparison of the
performance of algorithms, with and without EPM, over many trials. The results are
collected in terms of such parameters as the bias and standard deviation of the angle and
power estimates, the probability of resolution and false alarm rate. Statistics have been
collected, based on 100 trials of each algorithm at each of a aumber of discrete angular
separations and signal to noise ratios. The results are presented in a similar format to
those of Barabell et al [13].

Fig. 10 is a summary of the procedure used in the collection and analysis of the
statistical data. During the Monte Carlo trials, the positions of all minima of P(6) and
their depths are recorded, together with the corresponding powers estimated using
equations (18) and (19), and an average of the eigenvalue spectrum of the covariance
matrix at each signal to noise ratio. During analysis, thresholds may be set in angle,
power or null depth in order to distinguish between correctly identified signals, false
alarms, and estimates which may be ignored. For example, Fig. 11 shows how thresholds
may be set in power and angle. First of all a noise level power threshold is set, all
signals falling below this line being rejected. Signals above this threshold are assigned as
detections if the estimate of (angle, power) falls within the window defined by an angular
uncertainty, A8, and a power uncertainty, AP, each centred on the appropriate true signal
coordinate. All other detections are counted as false alarms. The statistical results
presented in the following sections (and in Appendices Al to A4 and A6) are all
conditioned on resolution (detection of both targets), as indicated in Fig. 10.

In the following sections, signal to noise ratio is measured in terms of the "array signal
to noise ratio” (ASNR) of one of the two targets. This is defined as {(signal to noise at
each element of the array, per snapshot) - 10 log, ,(n)).

5.2.2, TARGETS CLOSE TO BROADSIDE

The results presented in Figs. 12 to 17 relate to the analysis of 16 snapshots of data
from a 16 element linear array with 0.5 wavelength element spacing, and with 64 and 0_
set to *14.5 (*4 beamwidths). Using a dynamic range of 6dB in the selection of the
significant basis vectors, U,, has resulted in the dimension k being equal to 5, unless
otherwise stated. The target scenario simply consists of two equal powered random phase
signal sources in the far field, the first located at the broadside position (perpendicular to
the line of the array), and the second at a fractional beamwidth to one side. The
beamwidth referred to here is the angle from the peak of the main lobe of a matched
filter (equation (2)) placed on the first target location, to the position of the first null.

Fig. 12 shows the variation of the performance statistics as a function of ASNR (the
theoretical integrated signal to noise power ratio for each of the two emitters) for an
emitter separation of 0.1 beamwidths, The results, taken at 3dB signal to noise ratio
increments, are shown for the MUSIC algorithm acting on the 16x16 covariance matrix
(dotted lines) and for MUSIC acting on the EPM processed 5x5 covariance matrix
{dashed lines). The solid line in the plot of standard deviation is the Cramér Rao bound
{16] for the problem, assuming uncorrelated emitters. A noise power threshold of
10 log, ;(n) has been used, together with A9 = 1 beamwidth and AP = 6dB. In both
cases, as the ASNR rises, the probability of resolution increases (associated with a peak in
the false alarm rate), bias of the angle and power estimates tend to zero, and the
variance of the angle estimates, var(8;), tend towards the Cramér Rao bound. The bias
and variance results are plotted far the "left~hand” signal, and thus negative angular bias




indicates that the nulls of P(8) corresponding to the signals have moved further apart.

Unexpectedly perhaps, the variance of the power estimate, var(p;), increases with rising
ASNR. Examining the results given in Fig. 13 and Appendix 1, we see that var(p)
decreases with increasing angular separation. This fluctuation of the power estimate is
likely to arise from mismatch between the derived direction vectors, as used in A, and
the actual signal direction vectors. A mismatch in the direction vector of the “desired"
signal is likely to be correlated both with the noise background, and also with any residue
arising from poor cancellation of the second signal (as a result of an inaccurate angle
estimate), and would thus contribute to var(p;), in manner similar to that observed for
constrained adaptive cancellers [17]. The primary root cause may thus be assumed to be
time domain correlation of the signals and noise. In support of this, we note that the
algorithm which delivers the values of var(8;) closest to the Cramér Rao bound is
generally also associated with the lowest var(p;), and that both variances decrease as
angular separation and the number of snapshots increase (Appendix 1). Plotting var(p;) as
a percentage of the true power results in a curve which tends towards a constant variance
as ASNR increases.

We see that, for this scenario, in addition to reducing the time taken for the computation
of the eigenvectors by a factor of approximately 32, processing by EPM has an effect on
performance which is roughly equivalent to a 5-10dB increase in array signal to noise
ratio. If the noise was distributed equally amongst all the available degrees of freedom
(and the signal was concentrated in the k& primary degrees of freedom) before processing
by EPM, we might expect an improvement of approximately SdB in this case, and so the
observed change seems reasonable.

Fig. 13 shows a similar set of performance curves, plotted now as a function of emitter
separation (in 0.1 beamwidth increments) for an array signal to noise ratio of 21 dB. The
results again show that the performance of the EPM/MUSIC combination consistently
equals or improves upon that of MUSIC alone.

Further results, similar to those of Fig. 12, but demonstrating the behaviour of MUSIC,
KT, MEM, MLM, their z-plane root counterparts, and the EPM pre-processed equivalents
for a range of signal separations, are given in Appendix 1. Also included in that
Appendix are results obtained from analyses of only 5 snapshots of data. The degree of
improvement in performance is seen to depend on the choice of basic algorithm,
reflecting the different emphasis given by each of them to the covariance eigen
components. Generally, some improvement in performance is apparent, in addition t0 a
reduction of computation time, until the limits imposed by the chosen thresholds are
reached. Whilst the z-plane algorithm variants have enhanced performance over the
“spectral” versions when the array is perfectly regular, the application of EPM tends only
to lead to further improvements in probability of resolution at the expense of increased
angle estimation bias. Bias increases as the estimates become increasingly contaminated by
noise, and the z-plane roots move away from the unit circle.

In order to investigate the effect of choosing a particular threshold, we have analysed
Monte Carlo data so as to measure the variation of resolution probability and of false
alarm rate as a function of the noise level threshold. Thus, for a given signal separation,
plots such as those of Figs. 14 to 16 for EPM(k=5)/MUSIC may be produced, the
multiple curves corresponding to different array signal to noise ratios. Examination of
false alarm rate as a function of noise level threshold (Fig. 16) shows that false alarms
may be rapidly reduced at signal to noise ratios which are much higher or lower than
the range in which resolution is first achieved. This suggests that such false alarms are
largely related to the noise background. In the range for which resolution probability is
increasing, many false alarms are likely to result from the situation in which only one
target has been detected within the (A8,AP) window, and a second detection falls beyond
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one or both of the thresholds. Such a second detection is most likely to be *"signal
related® rather than "noise related” when the resolution threshold is approached.

Finally in this section, Fig. 17 again compares the results of normal MUSIC processing
with that of EPM/MUSIC, for a signal separation of 0.1 beamwidths, and 16 snapshots of
data from the 16 element linear array. In this case however, the dimension k assumed
for EPM was 3, the minimum necessary for resolution of the two targets using MUSIC.
Computation time is further reduced, and the ASNR required for resolution lowered.
Thus, (within certain angular limits which we have not explored - see the following
section) if the number of targets, m, is known a priori, Kk may be reduced to m+l for
maximum enhancement of performance.

5.2.3. TARGETS FAR FROM BROADSIDE

Because of the similarity of the assumption made in the previous section regarding the
extent of the field of view (ie, signals confined to a region about the broadside position)
with an assumption of spatial oversampling, it is perhaps strange to consider being able to
use EPM for a field of view in which such oversampling cannot be assumed. However,
the rank reduction which forms the basis of the method is related to a more general
assumption of "redundancy” in the array which includes the possibility of oversampling.
Thus, having created a calibration matrix, M, corresponding to . = 30 and 64 = 90
for example, its singular values decline in a similar way to those of the previous M,
based on the oversampling assumption. Once again, the maximum number of "significant”
basis vectors, U, can be determined from knowledge of the overall signal to noise ratio,
and an EPM filter defined. For the example of the 16 element linear array, Fig. 18
shows the EPM spatial filter function created by taking k = 5. The function is not as
sharply confined to the region of interest as was the case in Fig. 3a, but spreading over
a range of negative angles. However this will not be a problem, and the additional range
may be ignored. (We further note that, in this example, choosing k < S leads to nulls
of the spatial filter function being placed within the assumed angle of view, and a
consequent loss of performance in the region of such nulls.)

Taking the above situation, with two equal power independent sources located at 7.8 and
7.9 beamwidths (77 and 81 ) from boresight, Fig. 19 compares the performance of
MUSIC acting on the full 16x16 covariance matrix with that achievable via the $x5 EPM
processed covariance estimate. Probability of resolution has improved as a result of the
EPM pre-processing, although by the equivalent of only a 2-3dB shift along the ASNR
axis, which is somewhat less than was the case for targets close to broadside. In this
case, variance of the angle estimate has actually increased following EPM. Appendix 2
gives further results, for a range of algorithms, corresponding to targets placed well away
from broadside. These results show a range of behaviour which depends on the basic
algorithm. For example, the performance of the KT algorithm is virtually unchanged in
the present case, whereas that of MEM is improved by the equivalent of an increase of
up to 10dB in the power of each signal as measured by probability of resolution, and by
approximately 5dB in terms of variance of the angle estimates.

5.2.4. TWO UNEQUAL POWER SIGNALS

High discrimination algorithms, of the type referred to in this report, have the important
characteristics of enabling the detection of multiple signals within the beamwidth defined
by the matched filter (equation (2)), and, perhaps even more importantly, of enabling the
detection of targets whose powers fall below the sidelobes of the conventional
beamformer. Combining these two features, we expect to be able to resolve signals of
differing powers within the main beamwidth.

Fig. 20 compares the performance of MUSIC with that of EPM(k=5)/MUSIC for the
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example of two signals, located at 0 and 0.1 beamwidths with respect to broadside. In
this case, the ratio of the power of the signal at broadside to that of the signal at 0.1
beamwidths is ~20dB, and the ASNR scales in Fig. 20 correspond to the lower power
signal. Again, the performance of the basic algorithm is improved through the application
of EPM, in this case by the equivalent of approximately 5 or 6dB ASNR. It is also
interesting to compare this result with that of Fig. 12 for the case of equal power
targets. It can be seen that there has been a slight deterioration in overall performance
for both MUSIC and EPM/MUSIC in the present case, in that the false alarm rate is
slightly higher and that the probability of resolution curve falls to zero at slightly higher
ASNR.

Further results for a range of algorithms, including the z-plane variants, are given in
Appendix 3.

5.2.5. ARRAY CALIBRATION ERRORS

The particular high discrimination algorithms referred to in this report are known to be
sensitive to errors in the calibration of the antenna array, embodied in the matrix M. In
order to investigate the effect of EPM pre-processing under such circumstances,
simulations were carried out of 16 snapshots from a 16 element linear array, as used in
previcus sections, but with 210% random amplitude weights and $1% random phase
weights across the elements. These weights were chosen from independent rectangular
distributions. The particular set of weights used for these simulations is given in
Appendix 4, together with results which compare the behaviour of different algorithms.

For illustration in the present section, Fig. 21 shows results obtained for two equal power
signals, located at 0 and 0.2 beamwidths away from boresight (as measured on the basis
of the assumed uniform calibration). The algorithms used on the data from the
mis—calibrated array were MEM and EPM(k=5)MEM, assuming a field of view extending
from ~14.5" to +14.5 .

The presence of errors in the array calibration has caused the performance of MEM to
deteriorate considerably. Probability of resolution reaches only around 0.6 for ASNR less
than 60dB; false alarm rate is higher than in the accurately calibrated case (as can be
seen from Figs. Al.8 and Al.9) and continues to rise with increasing ASNR; standard
deviation of the angle estimates declines only gradually with increasing ASNR; and the
particular choice of errors in this case has resulted in an almost constant bias of both the
angle and power estimates. Pre-processing using EPM increases probability of resolution to
greater than 0.9 by 40dB ASNR, reduces the false alarm rate for the same thresholding
procedure (although the trend is still rising as ASNR increases), and reduces both
standard deviation and bias. Power estimation variance remains virtually unchanged after
EPM, following a curve which lies between thase for the accurately calibrated case.

Further results, given in Appendix 4, show that the behaviour of MLM is similar to that
of MEM under the same circumstances, whilst MUSIC and KT seem to be more robust.
However, it is worth noting that these results have been collected for a single perturbed
antenna calibration. More work needs to be carried out before general conclusions
regarding the relative robustness of algorithms can be derived with certainty.

6. CONCLUSIONS

We have shown how the svd based rank reduction of the constrained calibration matrix,
M, leads to a scheme for accelerating the data analysis required by modern high
discrimination algorithms such as MUSIC. We have referred to this scheme as an
“eigenvector projection method”, or EPM. In the spatial resolution problem, the
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achievable speed—-up depends on the angular limits to the required reconstruction, the
degree of spatial oversampling, and the assumed signal to noise ratio. In general, our
experiments have indicated that the rank reduction may sometimes be taken to the
extreme of choosing only m+! significant basis vectors, where m is the number of signals
to be detected, in order to obtain maximum processing economy without degradation of
the source reconstruction. The choice of this limit will depend in practice on the number
of high power signal sources to be reconstructed, and the range of spatial sampling rates
corresponding to the chosen field of view. The simulation results presented here have
shown that a substantial decrease in the processing time may be achieved. In addition, a
large number of Monte Carlo results have been presented which have demonstrated
significant improvements in the ability of a number of high discrimination algorithms to
extract signal parameters from noisy data, following processing by EPM. Furthermore,
EPM processing has been observed to have a beneficial effect on data taken from an
array whose calibration was randomly perturbed. Following consideration of the consistency
of our Monte Carlo results, we have concluded that the performance of svd-based
algorithms, for a perfectly calibrated array, is limited primarily by the cross—correlation
between the signals and the additive noise, as perceived through a limited number of
snapshots. Finally, we note that, although demonstrated here using linear arrays, EPM is
equally applicable to alternative array geometries.
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APPENDIX 1. MONTE CARLO RESULTS: TWO TARGETS CLOSE TO BROADSIDE

Contained in this appendix are a number of results relating to the problem described in
section 5.2.2, Data from a uniformly weighted 16 element 0.5 wavelength spaced linear
array, receiving signals from two far~field random phase point sources, has been simulated
and analysed by a variety of high discrimination algorithms and their EPM pre-processed
counterparts. Results, in terms of probability of resolution, false alarm rate, and bias and
variance of the resolved angle and power estimates, are plotted in a variety of ways as
follows:

Section Al.1: all as a function of array signal to noise ratio (ASNR) for a variety of

angular separations.

Section A1.2: probability of resolution as a function of the average ratio of second

to third eigenvalue of the data covariance estimate.

Section Al.3: all as a function of angular separation for a given ASNR.

Section Al.4: probability of resolution and false alarm rate as a function of noise

threshold, parameterised by ASNR.

Each set of plots corresponds 10 results from a particular group of algorithms, as follows:

A:  MUSIC -—~-- B:  EPM(kx=5yMUSIC C:  EPM(k=3)/MUSIC
KT weeeveeees EPM(k=5)/KT EPM(k=3)/KT
MEM —ememe EPM(k=5)/MEM EPM(k=3)/MEM
MM — EPM(k=5)/MLM EPM(k=3)/MLM

D: ROOT-MUSIC E: EPM(k=5)/ROQT-MUSIC
ROOT-KT EPM(k=5)/ROOT-KT
ROOT-MEM EPM(k=5)/ROOT-MEM
ROOT-MLM EPM(k=5)/ROOT-MLM

Al.1. RESULTS AS A FUNCTION OF ASNR
The results as a function of ASNR are plotted as follows:
Location of signals

Number of (beamwidths from
Figure Methods snapshots boresight)

Al.
Al.
Al.
Al.
Al.

Al.
Al.

16 0, 0.1

16 0, 0.2

;Dm D - Y . B ]

W > MpDOW> W MOO®m>




Mg 2

Al.15
Al.16
Al.17

Al.18
Al.19

Al.20
Al.21

A1.22
A1.23

16 0, 0.3

16 0, 0.4

@W> =P W> OW>

Comparing Figs. 1.1 and 1.7, for example, we see that EPM(k=5) pre-processing causes
algorithms to perform at least as well for 5 snapshots in this situation as do the
straightforward algorithms for 16 snapshots.

Al1.2. RESULTS AS A FUNCTION OF EIGENVALUE RATIO

Since the high discrimination algorithms under consideration depend on the separation of
signals as perceived from the point of view of the eigen basis of the estimated covariance
matrix, it was thought that plotting against some measure based on the average eigenvalue
spectrum might allow a more compact representation of the statistical results.
Qualitatively, one might expect that the likelihcod of successful resolution would depend
on the separation of the signal subspace eigenvalues from those of the noise space {1]. In
particufar, for the case of two partially correlated signals investigated here, the magnitude
of the second eigenvalue with respect to the noise background i§ clearly important. We
have therefore plotted our results as a function of E(2)/E(3), where E(2) and E(3) are,
respectively, the averages of the second and third eigenvalues of the covariance matrix. In

the case of the EPM pre-processed methods, the eigenvalues are those of the reduced
size covariance matrix.

A selection of the probability of resolution results as a function of eigenvalue ratio are
plotted as foilows:

Location of signals

Number of (beamwidths from
Figure Methods snapshots boresight)
Al.24 A 16 0, 0.1
Al.25 B
Al.26 C
Al.27 A 5
Al.28 B
A1.29 A 16 0, 0.2
A1.30 B
Al.31 C
A1.32 A ]
Al1.33 B
A1.34 A 16 0, 0.3
Al.35 B
Al1.36 Cc
Al.37 A S
A1.38 8




For a given number of snapshots and angular separation MUSIC, for example, achieves a
high probability of resolution for approximately the same eigenvalue ratio in both normal
and EPM forms. However, in general, as can be seen from these plots, the eigenvalue
ratio required for resolution is a function both of signal separation and number of
snapshots, the latter corresponding to “separation® or decorrelation in the time domain
(both between the signals themselves and the noise background - see Appendix 7). We
therefore appear not to have a convenient means of compressing our statistical results.

Al1.3. RESULTS AS A FUNCTION OF ANGULAR SEPARATION

A selection of results have been replotted as a function of angular separation for a given
ASNR, as follows:

Number of
Figure Methods snapshots ASNR_{(dB) _
A1.39 A 16 21
Al1.40 B
Al.41 A 5
Al.42 B

Al.4. RESULTS AS A FUNCTION OF NOISE THRESHOLD

Further to the example given in Figs. 12 to 14, described in section 5.2.2, we present a
few plots of probability of resolution and false alarm rate as a function of noise power
threshold and ASNR for a given angular separation. The results are as follows:

Figure

Al.43
Al 44

Al.45
Al 46

Al.47
Al.48

Al.49
Al.50

Location of signals
Number of (beamwidths from

Method snapshots boresight)

MUSIC 16 0, 0.1
EPM(k=5) /MUSIC

KT
EPM(k=5) /KT
MEM

EPM(k=5) /MEM
MLM

EPM(k=5) /MM
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APPENDIX 2. MONTE CARLO RESULTS: TWO TARGETS FAR FROM BROADSIDE

Contained in this appendix are a number of results relating to the problem described in
section 5.2.3. Data from a uniformly weighted 16 element 0.5 wavelength spaced linear
array, receiving signals from two far-field random phase point sources, has been simulated
and analysed by a variety of high discrimination algorithms and their EPM pre-processed
counterparts. Results, in terms of probability of resolution, false alarm rate, and bias and
variance of the resolved angle and power estimates, are plotted in a variety of ways 